In this guide, we will walk you through the steps to develop and integrate a custom machine learning model with Salesforce using the Heroku platform. By following these instructions, you’ll be able to leverage the power of custom machine learning in your Salesforce CRM.
Before you begin, make sure you have the following prerequisites in place:
Salesforce Developer Account: Sign up for a Salesforce developer account if you don’t have one already.
Heroku Account: Create a Heroku account at https://www.heroku.com/ if you haven’t done so.
Data Science Framework: Install a data science framework such as scikit-learn, TensorFlow, or PyTorch in your development environment.
Salesforce REST API Access: Obtain Salesforce REST API credentials to connect with Salesforce from your custom machine learning model.
# Import the required librariesfrom sklearn.feature_extraction.text import TfidfVectorizerfrom sklearn.naive_bayes import MultinomialNB# Sample data for sentiment analysisdocuments = ["I love Salesforce!", "Salesforce is amazing!", "I'm not happy with the service.", "Salesforce needs improvement."]labels = ["positive", "positive", "negative", "negative"]# Create a TF-IDF vectorizer and train the modelvectorizer = TfidfVectorizer()X_train = vectorizer.fit_transform(documents)model = MultinomialNB()model.fit(X_train, labels)
from flask import Flask, request, jsonifyapp = Flask(__name__)# API endpoint to handle predictions@app.route('/predict', methods=['POST'])def predict_sentiment():data = request.get_json()input_data = data['data']input_vector = vectorizer.transform(input_data)predictions = model.predict(input_vector)return jsonify(predictions.tolist())if __name__ == '__main__':app.run(debug=True)
$ heroku login$ git init$ heroku create your-app-name$ git add .$ git commit -m "Initial commit"$ git push heroku master
Obtain your Heroku API URL and key after deploying the API on Heroku.
In your Salesforce developer account, create a custom Apex class to interact with the Heroku API using Salesforce REST API:
public class HerokuAPIIntegration {private static String apiUrl = 'https://your-app-name.herokuapp.com/predict'; // Replace with your Heroku API URLprivate static String apiKey = 'YOUR_API_KEY'; // Replace with your Heroku API keypublic static String getSentimentPrediction(String data) {HttpRequest req = new HttpRequest();req.setEndpoint(apiUrl);req.setMethod('POST');req.setHeader('Content-Type', 'application/json');req.setHeader('Authorization', 'Bearer ' + apiKey);req.setBody('{"data": ["' + data + '"]}');Http http = new Http();HttpResponse res = http.send(req);if (res.getStatusCode() == 200) {return res.getBody();} else {return null;}}}
String inputText = 'I am thrilled with the new product!';String sentimentPrediction = HerokuAPIIntegration.getSentimentPrediction(inputText);System.debug(sentimentPrediction); // Output: ["positive"]
By following these steps, you have successfully developed and integrated a custom machine learning model with Salesforce using the Heroku platform. You can now leverage the power of data science to make advanced predictions and recommendations within your Salesforce CRM.
Quick Links
Legal Stuff